

E-CONTENT

BSCS 33

DESIGN AND ANALYSIS OF ALGORITHMS

3RD SEMESTER

B.SC COMPUTER SCIENCE

UNIT – I

ALGORITHM AND ANALYSIS

1.1 INTRODUCTION OF AN ALGORITHM

• The term algorithm was coined by Persian Mathematician Al-Khowarizmi in 9th century. He set

the simple rules used to perform some calculations either by hand or more usually on a machine.

• An algorithm is a set of instructions designed to perform a specific task. This can be a simple

process, such as multiplying two numbers, or a complex operation, such as playing a compressed

video file.

• The famous algorithm named Euclid’s algorithm which is used to find GCD (Greatest Common

Divisor) of two numbers.

• Algorithm is a step-by-step procedure, which defines a set of instructions to be executed in a

certain order to get the desired output.

1.2 DEFINITION OF AN ALGORITHM

“ The algorithm is defined as a collection of unambiguous instructions occurring in some

specific sequence and such an algorithm should produce output for given set of input in

finite amount of time. “

1.3 CHARACTERISTICS OF AN ALGORITHM

An algorithm should have the following characteristics −

• Unambiguous − Algorithm should be clear and unambiguous. Each of its

 steps and their inputs / outputs should be clear and must

 lead to only one meaning.

• Input − An algorithm should have 0 or more well-defined inputs.

• Output − An algorithm should have 1 or more well-defined outputs,

 and should match the desired output.

• Finiteness − Algorithm must terminate after a finite number of steps.

• Feasibility − Algorithm should be feasible with the available resources.

• Independent − An algorithm should have step-by-step directions, which

 should be independent of any programming code.

• Definiteness - Each step of an algorithm must be precisely defined.

• Effectiveness - An algorithm is also generally expected to be effective.

 This means that all of the operations to be performed in

 the algorithm must be sufficiently basic that they can in

 principle be done exactly and in a finite length of time.

1.4 COMPLEXITY OF ALGORITHM

• It is very convenient to classify algorithms based on the relative amount of time or relative

amount of space.

• They require and specify the growth of time / space requirements as a function of the input

size.

• Thus, we have the notions of Time Complexity and Space Complexity

• Time Complexity: Running time of the program as a function of the size of input

• Space Complexity: Amount of space required by the algorithm.

1.5 CATEGORIES OF AN ALGORITHM

The following are some important categories of algorithms −

1. Search − Algorithm to search an item in a data structure.

2. Sort − Algorithm to sort items in a certain order.

3. Insert − Algorithm to insert item in a data structure.

4. Update − Algorithm to update an existing item in a data structure.

5. Delete − Algorithm to delete an existing item from a data structure.

1.6 HOW TO WRITE AN ALGORITHM

• First understand the problem.

• After understanding the problem, create an algorithm carefully for given problem.

• Then the algorithm is converted into any one of the computer understandable language and

given to device (computer).

• The computer then executes it with some set of input and the result is produced as an output.

1.7 RULES FOR WRITING AN ALGORITHM

• The algorithm is basically divided into two sections-

Algorithm heading

Algorithm body

• Rules

S.N Heading Section

Algorithm created for

performing particular task

Problem to be solved

Computer
output

Correct result

Errors if any

Algorithm heading

It consists of name of algorithm, problem description,

input and output

Algorithm Body

It consists of logical body of the algorithm by making

use of various programming constructs and

assignment statement

1

Algorithm is a procedure consists of heading and body. The heading consists of

keyword Algorithm and name of the algorithm and parameter list. The syntax is

Algorithm name (p1,p2, ….,pn)

Keyword name of the algorithm parameter list

2

Then in the heading section we should write the following things

// Problem Description

// Input

// Output

S.N

Body Section

Written using programming language constructs

Statement used in

algorithm

Purpose of the

Statement

Equivalent Programming

language construct

1 read Getting input scanf , cin , gets, ….

2 write Display Output printf, cout, puts, …..

3 Assignment Operator =

4 and or not Logical Operators && || !

5 >= > < <= = ≠ Relational Operators >= > < <= == !=

6 + - * / % Arithmetic Operators + - * / %

7

Variables first letter

must be a alphabet .

Keywords not allowed.

Example

 Sum, sum7

Variables , identifiers

naming

Rules followed by respective

programming language

8

If () then

{

Simple if

If ()

{

} }

9

If () then

{

}

Else

{

}

If – else statement

If ()

{

}

Else

{

}

10 { } Group of instructions

enclosed with
{ }

11

for I 1 to n do

{

}

Looping Statements

for (i=1;i<=n;i++)

{

}

12

While(condition)

{

}

While(condition)

{

}

13

Repeat

{

}

Until(condition)

Do

{

}

While(condition);

14 // comment

/* */ multiline comment

// single line comment

15 Break Comes out of loop break

1.8 EXAMPLES OF AN ALGORITHM

1. Addition of two numbers

Algorithm add2num()

// it is used to find addition of two numbers

// Inputs – 2 - a, b

// Output – 1 – c

read a

read b

c a + b

write c

2. Find the given number is odd / even

Algorithm oddeven(n)

// it is used to find the given number is odd or even

// Inputs – 1 - n

// Output - odd / even

 r n % 2

 If r = 0 then

 Write “ Even Number”

 Else

 Write “ Odd Number”

3. Sum of first n numbers

Algorithm sumn(n)

// it is used to find sum of first n numbers

// Inputs – 1 - n

// Output - sum(n) - s

s = 0

For i 1 to n do

 s s + i

Write s

4. Factorial of the given number n

Algorithm fact(n)

// it is used to find factorial of given number n

// Inputs – 1 - n

// Output - factorial – f

f = 1

For i 1 to n do

 f f * i

Write f

5. Find the given number is Positive / Negative

Algorithm posneg(n)

// it is used to find the given number is +ve / -ve

// Inputs – 1 - n

// Output - positive / negative

 If n >= 0 then

 Write “ Positive Number”

 Else

 Write “ Negative Number”

1.9 ALGORITHM DESIGN

• The steps used to design an algorithm are,

1. Understanding the problem

2. Decision Making

3. Specification of algorithm

4. Algorithm verification

5. Analysis of an algorithm

6. Implementation or coding of an algorithm

1. Understanding the problem

This is the first step in designing the algorithm. Read the problem carefully and ask

questions for clarifying the doubts about the problem. Find what the necessary inputs for

solving the problem. Input is called instance. It is important to decide the range of inputs.

So this is an important step and it should not be skipped at all.

2. Decision making on

Understanding the Problem

Decision making

Specification / Design of algorithm

Verification

Analysis

Coding

➢ Capabilities of computational devices

It is necessary to know the computational capabilities of devices on which the

algorithm is running. It is a sequential or parallel algorithm. In Sequential

algorithm the instructions are executed one after another. In parallel algorithm the

instructions are executed in parallel.

➢ Choice for either exact or approximate problem solving method

The next decision is to decide whether the problem is to be solved exactly or

approximately. If the problem needs to be solved correctly then we need exact

algorithm. Otherwise if the problem is so complex that we won’t get the exact

solution then in that situation we need choose approximation algorithm.

➢ Data Structure

Data structure and algorithm work together and these are interdependent. So

choice for proper data structure is required before designing the actual algorithm.

Array, Linked List, ….

➢ Algorithmic Strategies

It is general approach by which many problems can be solved algorithmically. It

is also called as algorithmic technique / algorithmic paradigm. Some of the

techniques are,

Brute force : straight forward method.

Divide and Conquer : problem divided into sub problems.

Greedy technique : to solve problem optimal solution is made.

Back Tracking : this based on trial and error method.

3. Specification of Algorithm

There are various ways by which we can specify an algorithm. They are Flowchart,

Natural language and Pseudo code.

Natural Language:

It is very simple to specify an algorithm using natural language.

For example : addition of two numbers

Step1 : read the first number as a

Step 2 : read the second number as b

Step 3 : add the two number and store the result in c

Step 4 : display the result c.

Pseudo code

It is a combination of natural language and programming language constructs.

It is more precise than natural language.

It is more useful from implementation point of view.

For example : addition of two numbers

 Algorithm sum ()

 // addition of two numbers

// Inputs – 2 - a, b

// Output – 1 – c

read a

read b

c a + b

write c

Flowchat

The graphical / pictorial representation of algorithm is called flowchart.

Typical symbols used in the flowchart are :

4. Verification of algorithm

Algorithm verification means checking correctness of an algorithm. We normally check

whether the algorithm gives correct output in finite amount of time for a valid set of input. In

this phase check the range of inputs and the outputs.

5. Analysis of algorithm

Factors to be considered while analysing an algorithm are :

➢ Time efficiency of an algorithm

Amount of time taken by an algorithm to run. By computing time complexity we

come to know that the algorithm is fast or slow.

➢ Space efficiency of an algorithm

Amount of space required by an algorithm. By computing space complexity we

come to know that the algorithm requires more or less space.

➢ Simplicity of an algorithm

Simplicity means generating sequence of instructions which are easy to

understand. It is important characteristics of an algorithm.

➢ Generality of an algorithm

Generality shows that sometimes it becomes easier to design an algorithm in more

general way rather than designing it for particular set of input.

➢ Range of input

Range of inputs comes in picture when we execute an algorithm. The design of an

algorithm should be such that it should handle the range of input which is the most

natural to corresponding problem.

6. Implementation of an algorithm

It is done by suitable programming language. For example : if an algorithm consists of

object and methods then it will be better to implement such algorithm using some object

oriented programming language like c++ or JAVA.

1.10 PERFORMANCE ANALYSIS

• The efficiency of an algorithm can be decided by measuring the performance o an algorithm.

We can measure the performance of an algorithm by computing two factors.

 Amount of time required by an algorithm to execute

 Amount of space required by an algorithm

• This is popularly known as Time Complexity and Space Complexity of an algorithm.

•

Analysis of Algorithm

Computing best,

worst and

average case

efficiencies
Measuring

input size

Measuring

running time

Measuring

time

complexity

Measuring

space

complexity

Computing order

of growth of

algorithms

1.10.1 Space complexity of Algorithm

• Space complexity is the amount of memory used by the algorithm to execute and produce the

result.

• Algorithm uses memory space for four reasons

➢ Instruction Space

• It is the amount of memory used to save the compiled version of instructions.

• It is neglected for find space complexity.

➢ Environmental Stack Space

• Sometimes an algorithm maybe called inside another algorithm. In such a

situation, the current variables are pushed onto the stack, where they wait for

further execution and then the call to the inside algorithm is made.

• It is also neglected for find space complexity.

➢ Data Space / Input Space

• Amount of space used by the variables and constants.

• It is needed to find the space complexity.

➢ Auxiliary space / Temporary Space

• It is an extra space or the temporary space used by the algorithm during the

execution.

• It is needed to find the space complexity.

• Therefore Space Complexity = Data Space + Auxiliary Space

 SP = DS + AS or

SP = IS (input space) + Temporary Space

• Example 1

Algorithm add2num()

read a

read b

c a + b

write c

SP = DS + AS // three variables a , b,c each 2 bytes so 6 bytes

= 3 * 2 + 0 // no temporary space

= 6

• Example 2

Algorithm add2num()

read a

read b

c a + b

return c

SP = DS + AS // three variables a , b,c each 2 bytes so 6 bytes

= 3 * 2 + 2 // temporary space ie return statement

= 8

1.10.2 Time complexity of Algorithm

• Time complexity of an algorithm is the amount of time required by an algorithm to run to

completion.

• It is difficult to compute the time complexity in terms of physically clocked time. The

execution time depends on many factors such as

▪ System load

▪ Number of other programs running

▪ Instruction set used

▪ Speed of underlying hardware.

• The time complexity is therefore given in terms of frequency count.

• Frequency count is a count denoting number of times of execution of statement.

• If the input size is longer then, the algorithm usually runs for longer time, is known as

measuring the input size.

• Measuring running time :

o First identify the important operation of an algorithm. This operation is called basic

operation.

o Then compute total number of time taken by this basic operation. It is calculated by

the formula,

o T(n) = Cop + C(n) no. of times the operation needs to be executed

Running time of basic operation time taken by the basic operation

Problem Statement Input Size Basic Operation

Searching a key element

from the list of n elements
List of n elements

Comparison of key with every

element of list

Performing matrix

multiplication.

The two matrices

with order n x n.

Actual multiplication of the

elements in the matrices.

Computing GCD of two

numbers
Two numbers Division

1.10.3 Order of Growth

• Measuring the performance of an algorithm in relation with the input size n is called order of

growth. For example, the order of growth for varying input size of n is as given below

n Log n n log n n2 2n

1 0 0 1 2

2 1 2 4 4

4 2 8 16 16

8 3 24 64 256

16 4 64 250 65536

32 5 160 1024 4,294,967,296

1.10.4 Time Space Tradeoff

• Time space tradeoff basically a situation where either space efficiency can be achieved at the cost

of time or timer efficiency can be achieved at the cost of memory.

• Example 1

▪ Every program symbol table is created for storing variables and constants.

▪ If the symbol table is stored in the program then the time required for searching /

storing the variable in the symbol table will be reduced but memory requirement

will be more.

Space Complexity = high

Time Complexity = low

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6

n2

n log n

log n

n

▪ On the other hand if we do not store the symbol table in the program then memory

will be reduced but the processing time will be more.

Space Complexity = low

Time Complexity = high

• Example 2

▪ Suppose, in a file, if we store the uncompressed data then reading the data will be

an efficient job.

Space Complexity = high

Time Complexity = low

▪ But if the compressed data is stored then to read such data required more time.

Space Complexity = low

Time Complexity = high

• Example 3

▪ Reversing the order of elements. If an array A has n elements in ascending order

then we have to reverse those elements in descending order. This can be done in

two ways.

▪ Using another array B store the A array elements in reverse direction. It increase

memory but time will be reduced.

Space Complexity = high

Time Complexity = low

▪ Apply extra logic for the same array to store the elements in reverse direction. It

increase time but memory is reduced.

Space Complexity = low

Time Complexity = high

1.11 RANDOMIZED ALGORITHM

• An algorithm that uses random numbers to decide what to do next anywhere in its logic is called

Randomized Algorithm.

• For example, in Randomized Quick Sort, we use random number to pick the next pivot element

• Typically, this randomness is used to reduce time complexity or space complexity in other

standard algorithms.

• For example consider below a randomized version of QuickSort.

randQuickSort(arr[], low, high)

1. If low >= high, then EXIT.

2. While pivot 'x' is not a Central Pivot.

 (i) Choose uniformly at random a number from [low..high].

 Let the randomly picked number number be x.

 (ii) Count elements in arr[low..high] that are smaller than arr[x].

 Let this count be sc.

 (iii) Count elements in arr[low..high] that are greater than arr[x].

 Let this count be gc.

 (iv) Let n = (high-low+1).

 If sc >= n/4 and gc >= n/4, then

 x is a central pivot.

3. Partition arr[low..high] around the pivot x.

4. randQuickSort(arr, low, sc-1) // Recur for smaller elements

5. randQuickSort(arr, high-gc+1, high) // Recur for greater elements

• The important thing in our analysis is, time taken by step 2 is O(n).

1.12 ASYMPTOTIC NOTATIONS

• Asymptotic notation of an algorithm is a mathematical representation of its complexity

• Asymptotic analysis of an algorithm refers to defining the mathematical foundation / framing of

its run-time performance. Using asymptotic analysis, we can very well conclude the best case,

average case, and worst case scenario of an algorithm.

• Asymptotic analysis is input bound i.e., if there's no input to the algorithm, it is concluded to work

in a constant time. Other than the "input" all other factors are considered constant.

• Asymptotic analysis refers to computing the running time of any operation in mathematical units

of computation.

• For example, the running time of one operation is computed as f(n) and may be for another

operation it is computed as g(n2). This means the first operation running time will increase linearly

with the increase in n and the running time of the second operation will increase exponentially

when n increases.

• Similarly, the running time of both operations will be nearly the same if n is significantly small.

o Usually, the time required by an algorithm falls under three types –

▪ Best Case − Minimum time required for program execution.

▪ Average Case − Average time required for program execution.

▪ Worst Case − Maximum time required for program execution.

• Following are the commonly used asymptotic notations to calculate the running time complexity

of an algorithm.

 Big Oh - Ο Notation - Upper bound - Worst Case

 Big Omega - Ω Notation - Lower bound - Best Case

 Big Theta - θ Notation - Average bound - Average Case

 Small Oh – o Notation

 Small Omega - Notation

• Majorly, we use THREE types of Asymptotic Notations and those are as follows...

 Big Oh - Ο Notation

 Big Omega - Ω Notation

 Big Theta - θ Notation

Big - Oh Notation (O)

 Big - Oh notation is used to define the upper bound of an algorithm in terms of Time

Complexity.

 That means Big - Oh notation always indicates the maximum time required by an algorithm

for all input values. That means Big - Oh notation describes the worst case of an algorithm

time complexity.

 Big - Oh Notation can be defined as follows...

Consider function f(n) the time complexity of an algorithm and g(n).

 If f(n) <= C g(n) for all n >= n0 >= 1, C > 0.

Then we can represent f(n) as O(g(n)).

 Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on

X-Axis and time required is on Y-Axis

 In above graph after a particular input value n0, always C g(n) is greater than f(n) which

indicates the algorithm's upper bound.

 Example 1

Consider the following f(n) and g(n)...

f(n) = 3n + 2 g(n) = n

If we want to represent f(n) = O(g(n)) then it must satisfy

f(n) <= C g(n) for all values of C > 0 and n>= 1

 Solution:

f(n) = O(g(n))

f(n) <= C g(n)

3n + 2 <= C n

Above condition is always TRUE for all values of C = 4 and n >= 2.

 3n + 2 <= 4n

 3(2) + 2 <= 4(2)

 6+2 <= 8

 8 <= 8

By using Big - Oh notation we can represent the time complexity as follows...

3n + 2 = O(n)

Big - Omege Notation (Ω)

 Big - Omega notation is used to define the lower bound of an algorithm in terms of Time

Complexity.

 That means Big - Omega notation always indicates the minimum time required by an algorithm

for all input values. That means Big - Omega notation describes the best case of an algorithm

time complexity.

 Big - Omega Notation can be defined as follows...

Consider function f(n) the time complexity of an algorithm and g(n).

 If f(n) >= C g(n) for all n >= n0 >= 1, C > 0.

f(n) = O(g(n))

Then we can represent f(n) as Ω(g(n)).

 Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-

Axis and time required is on Y-Axis

 In above graph after a particular input value n0, always C x g(n) is less than f(n) which indicates

the algorithm's lower bound.

 Example

Consider the following f(n) and g(n)...

f(n) = 3n + 2 g(n) = n

If we want to represent f(n) as Ω(g(n)) then it must satisfy

 f(n) >= C g(n) for all values of C > 0 and n0>= 1

Solution:

f(n) = Ω (g(n))

f(n) >= C g(n)

3n + 2 >= C n

Above condition is always TRUE for all values of C = 1 and n >= 1.

 3n + 2 >= 1n

 3(1) + 2 >= 1(1)

 3+2 >= 1

 5 >= 1

By using Big - Omega notation we can represent the time complexity as follows...

3n + 2 = Ω(n)

Big - Theta Notation (Θ)

 Big - Theta notation is used to define the average bound of an algorithm in terms of Time

Complexity.

f(n) = Ω(g(n))

 That means Big - Theta notation always indicates the average time required by an algorithm for

all input values. That means Big - Theta notation describes the average case of an algorithm time

complexity.

 Big - Theta Notation can be defined as follows...

Consider function f(n) the time complexity of an algorithm and g(n).

If C1 g(n) <= f(n) >= C2 g(n) for all n >= n0, C1, C2 > 0 and n0 >= 1.

Then we can represent f(n) as Θ(g(n)).

 Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-

Axis and time required is on Y-Axis

 In above graph after a particular input value n0, always C1 g(n) is less than f(n) and C2 g(n) is

greater than f(n) which indicates the algorithm's average bound.

 Example

Consider the following f(n) and g(n)...

f(n) = 3n + 2

g(n) = n

If we want to represent f(n) as Θ(g(n)) then it must satisfy

C1 g(n) <= f(n) >= C2 g(n) for all values of C1, C2 > 0 and n>= 1

Solution

C1 g(n) <= f(n) >= C2 g(n)

C1 n <= 3n + 2 >= C2 n

Above condition is always TRUE for all values of

f(n) = Θ(g(n))

C1 = 1, C2 = 4 and n >= 1.

1n <= 3n+2 >= 4n

1(1) <= 3(1)+2 >= 4(1)

1 <= 5 >= 4

By using Big - Theta notation we can represent the time complexity as follows...

3n + 2 = Θ(n)

2 MARK QUESTIONS

1. Define Algorithm.

An algorithm is a sequence of unambiguous instructions for solving a problem in a finite

amount of time.

2. What are the 2 kinds of Algorithm Efficiency

Time Efficiency-How fast your algorithm runs?

Space Efficiency-How much extra memory your algorithm needs?

3. How can you specify Algorithms?

 Algorithms can be specified natural language or pseudo code.

4. Differentiate Time Efficiency and Space Efficiency?

Time Efficiency measured by counting the number of times the algorithms basic operation is

executed.

Space Efficiency is measured by counting the number of extra memory units consumed by the

algorithm.

5. What are the features of efficient algorithm?

• Free of ambiguity

• Efficient in execution time

• Concise and compact Completeness

• Definiteness Finiteness

6. Define Order of Algorithm

The order of algorithm is a standard notation of an algorithm that has been developed to

represent function that bound the computing time for algorithms.The order of an algorithm is a

way of defining its efficiency. It is usually referred as O-notation.

7. What are the different types of time complexity?

The time complexity can be classified into 3 types, they are

• Worst case analysis

• Average case analysis

• Best case analysis

8. What are the three different algorithms used to find the gcd of two numbers?

The three algorithms used to find the gcd of two numbers are

• Euclid‘s algorithm

• Consecutive integer checking algorithm

• Middle school procedure

9. Mention some of the important problem types?

Some of the important problem types are as follows

• Sorting

• Searching

• String processing

• Graph problems

• Combinatorial problems

• Geometric problems

• Numerical problems

10. What is order of growth?

Measuring the performance of an algorithm based on the input size n is called order of growth.

5 MARK QUESTIONS

1. Write short notes on Asymptotic notations

2. Discuss Algorithmic Strategies

3. Explain how algorithm can be specified.

4. Differentiate Space Complexity and Time Complexity.

5. What is meant by order of growth.

10 MARK QUESTIONS

1. Briefly explain the steps involved in algorithm design

2. Explain in detail about rules for writing an algorithm

3. Explain randomized algorithm in detail with example

4. Briefly Explain Performance analysis

5. Discuss Time Space Trade off.

